Pressupostos da dedução transcendental (B)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Transcendental Numbers

Transcendental numbers play an important role in many areas of science. This paper contains a short survey on transcendental numbers and some relations among them. New inequalities for transcendental numbers are stated in Section 2 and proved in Section 4. Also, in relationship with these topics, we study the exponential function axioms related to the Yang-Baxter equation.

متن کامل

Algebraic and Transcendental Numbers

To begin with, recall that a complex number α is said to be a root of a polynomial P (X) if P (α) = 0. A complex number α is said to be algebraic if there is a nonzero polynomial P (X), with integer coefficients, of which α is a root. The set of algebraic numbers is denoted by Q̄. A complex number α which is not algebraic is said to be transcendental. The following numbers are obviously algebrai...

متن کامل

Deciding polynomial-transcendental problems

This paper presents a decision procedure for a certain class of sentences of first order logic involving integral polynomials and a certain specific analytic transcendental function trans(x) in which the variables range over the real numbers. The list of transcendental functions to which our decision method directly applies includes exp(x), the exponential function with respect to base e, ln(x)...

متن کامل

Transcendental Ending Laminations

Yair Minsky showed that punctured torus groups are classified by a pair of ending laminations (ν − , ν+). In this note, we show that there are ending laminations ν+ such that for any choice of ν − , the punctured torus group is transcendental as a subgroup of PSL2C.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discurso

سال: 1992

ISSN: 2318-8863,0103-328X

DOI: 10.11606/issn.2318-8863.discurso.1992.37952